Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment.
نویسندگان
چکیده
We have here examined chemopotentiating effects of glycolysis inhibitor 2-deoxy-d-glucose (DG) in two epithelial ovarian carcinoma (EOC) cell lines and 17 freshly isolated ascitic EOC cell samples, and we identify low expression of the beta-F1-ATPase involved in mitochondrial ATP production as a candidate marker for sensitivity to this strategy. Although in the majority of samples, DG per se did not induce apoptosis, cotreatment with DG potentiated apoptosis and total antiproliferative effects of cisplatin and, to a lesser degree, carboplatin. In the cell lines, combination treatment with DG and cisplatin or carboplatin at noninhibitory concentrations prevented posttreatment regrowth in drug-free medium over a total of 5 days. DG per se allowed complete recuperation in drug-free medium. The more platinum-resistant a cell line was, the more sensitive it was to potentiation by DG and showed higher glucose uptake, DG-sensitive lactate production, and lower beta-F1-ATPase levels. In the ascitic samples, DG reduced the median IC(50) for cisplatin by 68% and, in the most sensitive samples, up to 90%, and DG-mediated potentiation correlated with low expression of beta-F1-ATPase. By contrast, cisplatin sensitivity did not correlate with beta-F1-ATPase levels. The findings validate targeting cancer cell glucose metabolism for potentiating platinum chemotherapy in EOC and indicate that reduced beta-F1-ATPase/oxidative phosphorylation distinguishes cells that are amenable to this strategy.
منابع مشابه
Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas.
The down-regulation of the catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is a hallmark of most human carcinomas. This characteristic of the cancer cell provides a proteomic signature of cellular bioenergetics that can predict the prognosis of colon, lung, and breast cancer patients. Here we show that the in vivo tumor glucose uptake of lung carcinomas, as assessed by p...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملAltered glutamine metabolism in platinum resistant ovarian cancer
Ovarian cancer is characterized by an increase in cellular energy metabolism, which is predominantly satisfied by glucose and glutamine. Targeting metabolic pathways is an attractive approach to enhance the therapeutic effectiveness and to potentially overcome drug resistance in ovarian cancer. In platinum-sensitive ovarian cancer cell lines the metabolism of both, glucose and glutamine was ini...
متن کاملAberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2009